رویکردی نوین در مدل سازی شبکه عصبی مصنوعی بر اساس منطق رگرسیون فازی و کاربرد آن در پیش بینی (مورد کاوی: پیش بینی قیمت گاز مایع ژاپن)

Authors

سیدعلی ترابی

شیما پاشاپورنظری

نجمه نشاط

abstract

در این مقاله، یک رویکرد جدید مدل­سازی برای مدل های شبکه عصبی مصنوعی بر مبنای مفاهیم شبکه­های عصبی و رگرسیون فازی ارائه شده است. به این منظور، مدل شبکه عصبی مصنوعی در قالب یک مدل رگرسیون غیرخطی فازی فرموله شده است، به نحوی که این مدل، مزایای هر دو مدل رگرسیون فازی و شبکه عصبی مصنوعی را دارد. بنابراین، این مدل به دلیل انعطاف­پذیری بالا، قابلیت استفاده در شرایط نبود قطعیت، مبهم یا پیجیده را دارد. علاوه بر این، مطالعه موردی پیش بینی قیمت گاز مایع در بازار ژاپن (بزرگ ترین وارد کننده گاز طبیعی جهان) برای نشان دادن نحوه استفاده از این رویکرد ارائه شده است. نتایج به دست آمده نشان می­دهد که قدرت پیش بینی مدل ارائه شده قابل قبول است. علاوه بر این، در شرایط غیرقطعی و پیچیده می تواند بر خلاف مدل های شبکه عصبی، اطلاعات شفافی از روابط موجود بین متغیرهای ورودی و پاسخ مدل به تصیم­گیرنده ارائه دهد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

رویکردی نوین در مدل‌سازی شبکه عصبی مصنوعی بر اساس منطق رگرسیون فازی و کاربرد آن در پیش‌بینی (مورد کاوی: پیش‌بینی قیمت گاز مایع ژاپن)

در این مقاله، یک رویکرد جدید مدل­سازی برای مدل‌های شبکه عصبی مصنوعی بر مبنای مفاهیم شبکه­های عصبی و رگرسیون فازی ارائه شده است. به این منظور، مدل شبکه عصبی مصنوعی در قالب یک مدل رگرسیون غیرخطی فازی فرموله شده است، به نحوی که این مدل، مزایای هر دو مدل رگرسیون فازی و شبکه عصبی مصنوعی را دارد. بنابراین، این مدل به دلیل انعطاف­پذیری بالا، قابلیت استفاده در شرایط نبود قطعیت، مبهم یا پیجیده را دارد. ...

full text

کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه

پیش‌بینی بارش یکی از مهم‌ترین مسائل در زمینه مدیریت بهینه منابع آب در بخش‌های مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیش‌بینی بارش زمستانه استان خراسان رضوی با استفاده از شبکه‌های عصبی مصنوعی می‌باشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقه‌ای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...

full text

کاربرد شبکه های عصبی مصنوعی در پیش بینی شاخص بازدهی نقدی و قیمت سهام

مدل سازی پیش بینی متغیرهای مالی و اقتصادی با توجه به رفتار متغیرها، روش های گوناگونی دارد. تحقیق حاضر، چگونگی پیش بینی بازده سهام در بورس اوراق بهادار تهران را با دو مدل آربیتراژ و شبکه های عصبی مصنوعی مورد آزمون قرار داده است. برای این منظور از اطلاعات روزانه شاخص بازده نقدی و قیمت به عنوان متغیر وابسته و از اطلاعات روزانه قیمت سکه بهار آزادی، حجم معاملات کل بازار و قیمت دلار به عنوان متغیرهای...

full text

ارزیابی مدل هیبرید شبکه عصبی مصنوعی-پانل دیتا در پیش بینی قیمت صادرات خشکبار ایران

در بسیاری از مطالعات برای پیش بینی متغیرهای اقتصادی اغلب از روش های کمی مبتنی بر داده های سری زمانی یا مقطع زمانی استفاده می شود. مطالعات سری زمانی و مقطع زمانی ناهمگنی کشورها را کنترل نمی کنند و همواره ریسک به دست آورن نتایج و پیش بینی های اریب دار وجود دارد. داده های پانل اطلاعات و درجه آزادی بیشتری را فراهم می آورد که این امر موجب حصول نتایج و پیش بینی های دقیق تری می شود. با توجه به سهم قاب...

full text

مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی

شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...

full text

مقایسه قدرت پیش بینی روش شبکه عصبی مصنوعی با سایر روش های پیش‏بینی: مورد قیمت چغندرقند

این مطالعه با هدف پیش­بینی قیمت اسمی و واقعی چغندرقند و مقایسه روش شبکه عصبی مصنوعی با سایر روش­ها صورت گرفت. پس از بررسی ایستایی سری­ها، تصادفی بودن متغیرها با استفاده از دو آزمون ناپارامتریک والد- ولفویتز و پارامتریک دوربین- واتسون بررسی شد. براساس نتایج این آزمون­ها سری قیمت اسمی چغندرقند به‏عنوان سری غیرتصادفی و قابل پیش­بینی و سری قیمت واقعی به‏عنوان سری تصادفی ارزیابی شد. دوره مطالعه نیز ...

full text

My Resources

Save resource for easier access later


Journal title:
نشریه مهندسی صنایع

Publisher: پردیس دانشکده های فنی

ISSN 2423-6896

volume 47

issue 1 2013

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023